
 

Using Deep Learning for Automatic 
Translation 
 
Martin Rupp 
 
SCIENTIFIC AND COMPUTER DEVELOPMENT (SCD) 

 
 
 
In this article, we will learn how to use Deep Learning to create an automatic translation system. 
For this, we will provide a step-by-step tutorial to help you understand and build a Neuronal 
Machine Translation. 
 
An Overview of Machine Learning and Machine Translation 

Quick facts about the history of Machine Translation 
Why Deep Learning is good at doing MT 
The functioning of an LSTM network applied to MT 

Some info about SMT 
The main principles of NMT 

RNNs and LSTM 
Encoders and Decoders 
Gated Recurrent Unit (GRU) 
The ‘attention’ mechanism 
Embeddings 
Word2Vec, Glove, ELMO, and BERT 

Tools and Software Needed for Building an Automatic Translation System with Deep Learning 
Versions 
TensorFlow 
Keras 
Pandas 
Word2Vec 

How to Code an Automatic Translation System by Using TensorFlow and Keras 
Training and Testing an Automatic Translation System Using Deep Learning 

Training and testing using the LSTM cells 
With Self-Attention 

A Conclusion Regarding The Development Of Machine Learning Based Automatic Translation 
System 

Deep Learning and the Universal Translator 

 



 

Presentation of our Deep Learning translation software 
Directions 
References 
 
 

An Overview of Machine Learning and Machine 
Translation 
 
Before we explain concretely how to use Deep Learning (DL), we aim to provide a quick 
background to the reader in the area of Machine translation. We assume that the reader has a 
basic knowledge of machine learning, training, supervised learning, and neural networks and 
understands the concepts of artificial neurons, layers, and back-propagation. 

Quick facts about the history of Machine Translation 
 
The concept of Machine Translation (MT), or the ability to translate automatically - via a 
machine - natural languages into each other dates at least from 1949 when Warren Weaver 
stated the main principles of MT. At first, MT was done using expert rules (RBMT), requiring a lot 
of work from human translators. Then, in the late 70's, Statistical Machine Translation (SMT) 
appeared and started to develop itself, especially under the influence of the Candide project 
funded by IBM. 
 
SMT was based on computing the most probable relationship between pairs of words and 
sentences taken from a text corpora (in the original language and the targeted language). 
 
SMT ruled the area of MT until 2000 when the application of Neural Networks to MT, Neural 
Machine Translation (NMT),  was proposed as an alternative to SMT.  
 
While NMT did not succeed well at the beginning, it made impressive progress through the 
years and this is only with the recent development of AI processing power (GPU cards, etc…) 
that NMT is getting superior results to SMT. 
 
With the ongoing research on Deep Learning and Long Short-term Memory designs (LSTM), 
NMT is getting more and more 'insane' results and it's only a matter of time before NMT will 
replace SMT in all the actual commercial automatic translation software. 

Why Deep Learning is good at doing MT 
 

 



 

Deep Learning aims at the creation of an artificial brain so everything that a human brain can do 
can be theoretically performed by a Deep Learning system. Besides, LSTM, a Deep Learning 
technique - a Recurrent Neural Network (RNN) to be more precise - has unprecedented records 
of recalling and detecting temporal patterns. This is of interest when considering a sentence 
from a natural language as a conditional time series of words or in fact, equivalently, considering 
a sentence as the result of a Markov process. 

The functioning of an LSTM network applied to MT 

Some info about SMT 
 
Let's now focus on how our LSTM will work in the context of MT. As a start, we must briefly 
describe the main principles of SMT and how MT works. 
 
As a general rule, one must use a base named a parallel corpus linguae. This is, in essence, a 
'super-dictionary', usually created from sources gathered from professional translators or senior 
students , where pairs of words or sentences are associated together. 
 
SMT and NMT are both using parallel corpus linguae. SMT will partition the input sentence into 
groups of words and then use probabilities to find the most probable ‘matching’ combination. 
 
An SMT such as moses for example, will create a translation model from the training data and 
apply that translation model to any input, providing the sentence in the target language which 
has the highest score in terms of conditional probability. 
 
Parallel corpus linguae can be found on the internet for a lot of natural languages. For example, 
many English/Dutch parallel corpus linguae can be downloaded from the Tatoeba Project. 
Other sources exist, such as the Linguee website.  
 

 

http://www.statmt.org/moses
https://www.linguee.com/english-dutch/search?source=auto&query=we+need+to+write+a+business+plan


 

 
Illustration: Parallel corpus linguae from the Linguee.com website. 
 
The Tatoeba Project provides tab-delimited bilingual sequence pairs for various languages. For 
instance, the English/Dutch parallel corpus contains around 50,000 lines of translated pairs.  
 

 
Illustration: Parallel corpus linguae (English/Dutch) from the Tatoeba project website. 
 
Usually, SMT will create a language model for the (non-parallel) corpus of the input language. 
 
The translation model and the language model are then used, together with possibly a lexicon 
model and an alignment model to compute a series of probabilities, generally using Bayesian 
rules and a maximal likelihood (MLE) estimator. The MLE represents a score and the MT will 
pick up the sentence in the targeted language that 'matches' the more the input sentence, e.g. 
with the higher MLE. 
 
The principle of SMT is, roughly, that "if such an English sentence with such words (potentially 
closer or identical to some of the input words)  was associated to such a Dutch sentence with 

 



 

such words and if such another English sentence with such words (potentially closer or identical 
to some of the input words) was associated to such a Dutch sentence with such words and …”  
then there is a (conditional) probability p that this input sentence is translated by this output 
sentence. By computing all these conditional probabilities, we can use estimators such as the 
MLE to score candidates for the translated sentence. 

The main principles of NMT 
 
Here are the main tools and concepts that we need to clarify, so as to be able to build our 
automatic translation machine which will translate, as you may have guessed, from English to 
Dutch.  
 

- RNNs and LSTM 
- Encoders and Decoders 
- Gated Recurrent Unit (GRU) 
- The attention mechanism 
- Embeddings 
- Word2Vec, ELMO and BERT 

RNNs and LSTM 
 
First, let's look at the structure of a RNN. We represented a basic RNN below. As you can see it 
combines layers:  which form a directed sequence. 𝑙𝑎𝑦𝑒𝑟
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Illustration 1: a simple RNN 

 

 



 

 
At this stage it’s not exactly clear what is happening in a RNN. It is important to understand that 
each layers produces an activation  (just like any neural network layer) but it also directly 𝑎

𝑡

produces an output  which is a function of . 𝑌
𝑡

𝑎
𝑡

 
The equation of the (ordinary layer of a ) simple RNN that we have presented is the following: 
 

 𝑎
𝑡

= 𝐹(α. 𝑎
𝑡−1

+ β. 𝑥
𝑡

+ γ)
 
And: 
 

. 𝑌
𝑡

= 𝐺(δ. 𝑎
𝑡

+ ϵ)

 
Here F and G are two activation functions,  are variables that depend on the layer α, β, δ, ϵ
coefficients.  
 
The RNN that we have represented is called many-to-many and that’s because there are 
‘many’ inputs and ‘many’ outputs. That’s typically what we need to do in a machine translation. 
A unique-to-many outputs is named a one-to-many RNN and a many inputs to a unique output 
is named a many-to-one RNN. 
 
RNN are not only useful in the domain of MT. They are also successfully applied to Speech 
recognition, music generation, feelings recognition and much more. 
 
In the case of MT, we need to proceed with a slightly different type of RNN which we represent 
there: 
 

 



 

 
Illustration 2: a many-to-many RNN suited for NMT 

 
 
This is the type of RNN that we shall be using in what will follow. The k components of the input 
vector will be the words of the sentence in the English language and the l components of the 
output vector are the words of the translated sentence in the Dutch language.  
 
LSTM is a refinement of RNNs and so far, they are among the more performant RNN designs. 
In such a design, several or all layers are replaced by LSTM cells. These cells have a different 
design than the ‘ordinary’ RNN layers. 
 
Here we present the comparison between the ordinary layer and the LSTM cell. 
It's not exactly straightforward to tell why the LSTM cell is much better than the 'ordinary' RNN 
layer...except that it is slightly more complex. 
 

An LSTM cell has two gates: an input gate and a forget gate . Here the 
‘Sigma’ symbol represents a linear combination1 with the inputs (+ a constant). 
It also transfers deep learning hidden states2 (h.c).  
 

2 Warning: this is the ‘deep learning version’ of the term ‘hidden state’ 
1 Note that all operations are vector operations 

 



 

 

 
 

 
 
 

Illustration 3: comparison between a standard RNN layer and an LSTM cell 
 

 



 

The model will mimic the Human concept of forgetting. For example, forgetting non-essential 
information. It is fully recurrent since it will re-input the previous states as well. 
 
It would be too long to explain why the LSTM is good at doing the work and we wanted here to 
give just some hints to a curious reader and also to demonstrate how neural networks are in fact 
'abstract' logical circuits which are more designed by A.I engineers rather than coded. This is 
also how analog computers (nondigital) are programmed. 

Encoders and Decoders 
 
We already illustrated the concept of encoder-decoder as the RNN suited for machine 
translation (illustration 2). In fact, two RNNs. One is the encoder, it encodes a sequence of 
words into a fixed-length vector and the other is a decoder, it does the reverse operation.  
The RNN in illustration 2 is also called a sequence-to-sequence RNN. 
 

Gated Recurrent Unit (GRU) 
This is just an LSTM cell with fewer features. It can perform better than LSTM in special areas.  
It can be used to simplify some designs and will generally perform faster than LSTM. We won’t 
use GRU here but we mention their existence to the curious reader. 
 

The ‘attention’ mechanism 
The ‘attention’ mechanism is a key concept in NMT and was introduced relatively recently. 
However it’s very simple, it only consists in giving more ‘weight’ (importance) to one or more 
words contained in the sentence to translate. This simple mechanism allows now to solve many 
problems encountered before by NMT. 
 

Embeddings 
Embeddings are a kind of multi-dimensional representation of a word to provide statistical 
information about it and link it with others 'base words' which have a closer meaning or may 
have a close relationship with it. For example, the word lynx may be embedded as (cat, 
animal,wild) with some coordinates associated with it. 
Word embedding usually allows the Skip-gram technique: predicting “surrounding” words to an 
existing word. 
 

Word2Vec, Glove, ELMO, and BERT 
 
BERT is a Bidirectional Encoder Representation from Transformers. This is a language model 
or language representation of English. This means that BERT provides a parameterized view of 
the English language, containing synonyms, and similarities between words and sentences, for 
example. BERT also provides word embeddings, the same as Word2vec, GloVe, ELMo 

 



 

 , and others There are a lot of similar tools and transformers in the area of natural language 
processing (NLP). Actually, BERT is a pre-trained system that usually competes directly with the 
LSTM cells.  
 
Now that we have defined the theoretical background of our project, we will detail in the next 
part, which tools we must use to build our English-Dutch NMT system. 
In this project, we should have used BERT but because of time limitations, we will use 
Word2vec instead. 

Tools and Software Needed for Building an 
Automatic Translation System with Deep Learning 
 
Our project will consist of building an English-to-Dutch translator using Deep Learning. In the 
first part, we briefly introduce the main theoretical concepts that are involved. Now we introduce 
the tools that we shall need: 
 

● TensorFlow 
● Keras 
● Pandas 

 
There are multiple frameworks that provide API for deep learning. The combination TensorFlow 
+ Keras is - by far - the most popular, but other equivalent frameworks such as PyTorch, Caffe 
or Theano are also widely used. 
 
These frameworks often provide a 'black box' approach to Neural Networks and they do most of 
the 'magic' without requiring the user to code the neural network's logic. There are also other 
ways to build neural networks, for instance, with deep learning compilers. Here, however, we do 
not wish to use such tools. 
 
We will write the code and run the NMT on a Linux centOS 7.8.  Centos is reputed to be a very 
stable Linux distribution, however in reality, almost all the development we will do in the project 
will be using Python, so the choice of the O.S is not really important. 

Versions 
 
We list here the versions of the Python modules that we are using. All these versions can be 
explicitly installed by using the '==[version]’ flag at the end of the pip3 command. For instance: 
“pip install tensorflow==2.0”. 
We leave the user the choice of the versions, anyway, depending on their operating system. 
We are not using in this project the latest version of these modules. 
 

 



 

 

module version 

TensorFlow 1.5.0 

Keras 2.1.0 

numpy 1.18.1 

pandas 1.1.3 

word2vec  

 
 

TensorFlow 
TensorFlow is a very popular Python framework for the building of neural networks. 
To Install TensorFlow, we proceed as follows: 
 
First, we need to install Python. 
For this we update the package manager: 
 
yum update -y 
 
Then we install Python3: 
 
yum install -y python3 
 
This will actually install Python 3.6 which is not the latest Python version at the moment where 
we write this tutorial, but that will do it. 
 
Note that the next steps aren't really O.S. dependent and only require Python3.6 to be 
installed. 
 
Pip3 - the python3 package manager - should be installed by default. 
 
Once this is done, Tensorflow can be installed by running: 
 
pip3 install tensorflow 
 
The download and installation of the TensorFlow package may take some time since the 
package is more than 400 MB. 
 
You can control that TensorFlow installed successfully by typing: 

 



 

 
pip3 show tensorflow  
 
The output should be similar to this: 
 
Name: tensorflow 

Version: 2.3.1 

Summary: TensorFlow is an open-source machine learning framework for everyone. 

Home-page: https://www.tensorflow.org/ 

Author: Google Inc. 

Author-email: packages@tensorflow.org 

License: Apache 2.0 

Location: /usr/local/lib64/python3.6/site-packages 

Requires: opt-einsum, tensorboard, termcolor, six, h5py, gast, tensorflow-estimator, 

google-pasta, astunparse, wrapt, grpcio, absl-py, numpy, keras-preprocessing, 

protobuf, wheel 

Required-by: 

 
 
 
Warning: it’s important to run python3 and not simply ‘python’ (same for pip3 and not ‘pip’) 
because there usually exists a ‘system’ python in centos which must not be used for the project. 

Keras 
 
Now that we have installed TensorFlow, we need to install Keras. Keras is a deep-learning API 
that will run on top of TensorFlow. Keras can run as well on top of Theano for example, but here 
we choose to associate it with TensorFlow. 
 
To install Keras, the process is identical, we type the following command: 
 
pip install keras 
 
To check if keras is well installed, just type: 
 
pip list | grep Keras 

Pandas 
 
Pandas is a Python API for data manipulation and data analysis. We will need it, among other 
things, to prepare the training data for the Deep Learning Model.  
 
This library can be simply installed by using pip3: 

 



 

 
pip3 install pandas 
 

Word2Vec 
 
We need Word2Vec for the word embedding, that is to say, to create the embedding layer in our 
neural network. As we mentioned previously, there are also other tools that can do the job like 
GloVe or BERT. BERT, which is not context-free, unlike Word2Vec, would provide more 
efficiency here because it offers a richer set of information, but unfortunately, it is more complex 
to integrate. 
 
 
In this project, we will not use a GPU card. If we wanted GPU support, we should have 
proceeded slightly differently. 
 
The tool we have installed will allow us to build out the MT software. Here is how the pieces of 
our puzzle will get assembled:  
 

1) We will process an English dictionary and have BERT create a custom word embedding 
system for the English language. 

 
2) We will build a sequence-to-sequence RNN with LSTM cells using Keras. Keras has 

indeed built-in support for everything that we need. 
 

3) We will add an embedding layer to the RNN  from the embedding created by BERT, at 
the start of the LSTM sequence-to-sequence RNN. 
 

4) We will process the parallel corpus linguae English/Dutch by cleaning it, formatting it, 
and tokenizing it. 
 

5) We will train our Deep Learning model with the processed parallel corpus linguae 
English/Dutch. 
 

6) We will test our NMT with several English sentences to check its accuracy. 
 
There could be some variations. For instance, instead of using LSTM cells, we could use GRU 
cells. 
 
 

 



 

 
 
Illustration 4: Workflow of the Neural Machine Translation system we will build 
 
 
We must also decide how many words we will use for training the system, because training our 
model may require very important processing power that we do not have in the context of the 
project. 
 
We will develop functions that will allow us to train and translate from English into another 
language. 
 

def train_model(path_to_data,path_to_model,use_attention=1) 

 
def translate(path_to_data, path_to_file, path_to_model) 

 

● Path_to_data: path to the training data  

● Path_to_model path to the model 

● Use_attention: flag to use the self-attention mechanism 

 



 

● Path_to_file: path to a file containing the English texts to 

translate 

How to Code an Automatic Translation System by 
Using TensorFlow and Keras 
 
Now that we have defined all the concepts and tools that we need and that we have installed, 
we will build the DMT system. 
In what follows there is, in fact, very little code that we will write, because most of the logic 
consists in using pre-formatted 'templates' which use the Keras framework. 
 
A part of our Kears code is essentially inspired by [1].  
 
As a start, we need to load our libraries: 
 

import warnings 

warnings.filterwarnings("ignore") 

import tensorflow as tf 
import numpy as np 
import string 
from numpy import array, argmax, random, take 
#for processing imported data 
import pandas as pd 
#the RNN routines 
from keras.models import Sequential 
from keras.layers import Dense, LSTM, Embedding, RepeatVector 
#we will need the tokenizer for BERT 
from keras.preprocessing.text import Tokenizer 
from keras.callbacks import ModelCheckpoint 
from keras.preprocessing.sequence import pad_sequences 
from keras.models import load_model 
from keras import optimizers 
#that's optional if you want to generate statistical graphs of the DMT  
#import matplotlib.pyplot as plt 

 
We shall dig into the data processing later when working on the training. 
 
Building our model with Keras is extremely straightforward. We need to use the LSTM class.  

 

https://keras.io/api/layers/recurrent_layers/lstm/


 

Most of the parameters of a LSTM cell are provided by default so the only thing we need to 
provide is the dimensionality of the output, that is to say, the number of LSTM cells that will be 
created for our sequence-to-sequence RNN. 
From what we have defined, an input (resp output) vector will be the total of the words inside the 
original sentence (resp translated sentence). But since we use an embedding, we will get 
tokenized words, which means that words can be split into sub-tokens, which will increase the 
number of words in the input sentence. We will have to pad anyway the input/output vectors. 
 
 
The length of 512 is enough here. 
 

lstm = tf.keras.layers.LSTM(512) 

 
 
And … that's mostly all of the programming, thanks to the developer(s) of Keras. Most of the 
readers shouldn't have to dig inside that black box. However, coding an LSTM cell from scratch 
isn't a really hard challenge at all as its design is simple.  
 
We need to use the Sequential model provided by Keras as well. 
 

model = Sequential() 

 
Finally, we add a Dense layer to our model. A dense layer takes all the output neurons from the 
previous layer. We need the dense layer because we’re making predictions here. Indeed what 
we want is the sentence in the Dutch language which has the maximal score to be the 
translated English sentence that has been inputted. A dense layer generally computes a 
softmax on the outputs of each LSTM cell. 
 

model.add(Dense(LEN_RU, activation='softmax')) 

 
Where  LEN_RU  is the size of the output vector (we will compute these parameters later on). 
The same for the variable  LEN_EN . 
Finally here is the main code for our model: 
 

model = Sequential() 

model.add(LSTM(512)) 

model.add(RepeatVector(LEN_EN)) 

model.add(LSTM(512)) 
model.add(Dense(LEN_RU, activation='softmax')) 
rms = optimizers.RMSprop(lr=0.001) 
model.compile(optimizer=rms, loss='sparse_categorical_crossentropy') 

 

https://www.tensorflow.org/guide/keras/sequential_model
https://keras.io/api/layers/core_layers/dense/


 

 
 
We are using a Keras optimizer named RMSprop. It will optimize the gradient descent technique 
itself used for backpropagation.  
 
We need to add the embedding layer and we also want to include an attention layer as well 
between the encoder and the decoder. 
 
We need to add the embedding layer which is performed with Word2Vec. This is in fact a 
pre-trained embedding layer. So what we need to do is to generate the Word2Vec weights 
matrix (the weights of the neurons of the layer) and fill a standard keras Embedding layer with it. 
We can use the gensim package to get the embedding layer automatically: 
 
 

from gensim.models import Word2Vec 

 
Then: 
 

model_w2v = Word2Vec(common_texts, size=100, window=5, min_count=1, workers=4) 

 
The embedding layer can then be retrieved by the following code: 
 

model_w2v.wv.get_keras_embedding(train_embeddings=False) 

 
 
We can call the  model.summary()  function to get an overview of our model: 
 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param # 

================================================================= 

embedding_1 (Embedding)      (None, None, 100)         1200 

_________________________________________________________________ 

lstm_1 (LSTM)                (None, 512)               1255424 

_________________________________________________________________ 

repeat_vector_1 (RepeatVecto (None, 8, 512)            0 

_________________________________________________________________ 

lstm_2 (LSTM)                (None, 512)               2099200 

_________________________________________________________________ 

dense_1 (Dense)              (None, 512)               262656 

================================================================= 

Total params: 3,618,480 

Trainable params: 3,617,280 

Non-trainable params: 1,200 

 



 

_________________________________________________________________ 

 

 
As we mentioned it previously, we wish to add an attention mechanism. 
We could write it from scratch but a simpler solution is to use an existing attention Keras module 
such as the Keras self-attention module. 
 
We need to import the module: 
 

from keras_self_attention import SeqSelfAttention 

 
And we will add it between the two LSTM blocks by inserting the following line of code: 
 

model.add(SeqSelfAttention(attention_activation='sigmoid')) 

 
Our model is now complete.  
 

Here is the final code of our neural network coded in Keras: 
 
 

import warnings 
warnings.filterwarnings("ignore") 
import numpy as np 
import string 
from numpy import array, argmax, random, take 
#for processing imported data 
import tensorflow as tf 
import pandas as pd 
#the RNN routines 
from keras.models import Sequential 
from keras.layers import Dense, LSTM, Embedding, RepeatVector 
from keras.preprocessing.text import Tokenizer 
from keras.callbacks import ModelCheckpoint 
from keras.preprocessing.sequence import pad_sequences 
from keras.models import load_model 
from keras import optimizers 
#that's optional if you want to generate statistical graphs of the DMT 
#import matplotlib.pyplot as plt 
#from keras.utils import plot_model 
#import pydot 
 
from gensim.models import Word2Vec 

 

https://pypi.org/project/keras-self-attention/


 

from gensim.test.utils import common_texts 
from keras_self_attention import SeqSelfAttention 
 
 
model = Sequential() 
 
model_w2v = Word2Vec(common_texts, size=100, window=5, min_count=1, 

workers=4) 
model.add(model_w2v.wv.get_keras_embedding(train_embeddings=False)) 
model.add(LSTM(512)) 
model.add(RepeatVector(8)) 
 
model.add(SeqSelfAttention(attention_activation='sigmoid')) 
 
model.add(LSTM(512)) 
model.add(Dense(LEN_RU, activation='softmax')) 
rms = optimizers.RMSprop(lr=0.001) 
model.compile(optimizer=rms, loss='sparse_categorical_crossentropy') 
 
#plot_model(model, to_file='model_plot4a.png', show_shapes=True, 

show_layer_names=True) 
 
model.summary() 
 
 
 

When we run the code, we get the following output:  
 
[root@ids ~]# python3 NMT.py 

Using TensorFlow backend. 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param # 

================================================================= 

embedding_1 (Embedding)      (None, None, 100)         1200 

_________________________________________________________________ 

lstm_1 (LSTM)                (None, 512)               1255424 

_________________________________________________________________ 

repeat_vector_1 (RepeatVecto (None, 8, 512)            0 

_________________________________________________________________ 

seq_self_attention_1 (SeqSel (None, 8, 512)            32833 

_________________________________________________________________ 

lstm_2 (LSTM)                (None, 512)               2099200 

_________________________________________________________________ 

dense_1 (Dense)              (None, 512)               262656 

================================================================= 

 



 

Total params: 3,651,313 

Trainable params: 3,650,113 

Non-trainable params: 1,200 
 
 

Now that the model is ready, we will move to the final phase of the development: preparing the 
data for training the model. 

Training and Testing an Automatic Translation 
System using Deep Learning 

Training and testing using the LSTM cells 
 
We first start to train and test a model built only with the core system: TSTM cells and without 
self-attention and word embedding. The standard Keras embedding component will provide the 
encoding from a set of words into vectors. 
 
The last phase of our development consists in training the model. 
For this, there are several specific tasks that must be performed: 
 

● Cleaning the training data (preprocessing) 
● Tokenization of the input data (preprocessing) 
● Deciding on the ratio training data / self-test data 
● Training of the model 

 

 

Once the input data are cleaned, our next step is to prepare the input data (source) and output 
data (target) so that we can have numerical, fixed-size, input, and output models. Indeed we 
cannot (yet) feed sentences or words to a Keras neural network model. 
 
The Keras tokenizer will create an internal vocabulary made with the words contained in the 
parallel corpus. 
 
We must first use the function  fit_on_texts .  
 
This function accepts as an argument a list of sentences and builds a mapping from the most 
commonly encountered words to indexes. It doesn't encode any sentence but prepares a 
tokenizer to do so.  
 

 



 

Then we have to provide a way to encode our input sentences. Once we have initialized the 
tokenizer, we will use the function  texts_to_sequences  for the encoding. The following code 
retrieves a word from a numerical vector.  
 

 temp = [] 
       for j in range(len(i)): 
            t = get_word(i[j], ru_tokenizer) 
            if j > 0: 
                if (t == get_word(i[j-1], ru_tokenizer)) or (t == None): 
                     temp.append('') 
                else: 
                     temp.append(t) 
            else: 
                   if(t == None): 
                          temp.append('') 
                   else: 
                          temp.append(t) 
       return ' '.join(temp) 

 
 

We will use a Google Collab notebook to run the training and the testing since we can use free 
GPU power there. 
 
First, we run on the first entries of our data set. 
We will get an exact result for the entries that fall in the training data and we will get an 
approximated transaction for the other data. We can check that the translator doesn’t behave so 
badly.  
 
Here we represent the input data in English, then the ideal translation, and finally the model 
translation.  

 



 

 

 

If we try with more complex sentences , outside of course the training data of the model, we get 
this: 
 
 

Input Human translation Model translation 

 tom offered mary a 
handkerchief  

 tom bood maria een zakdoek 
aan  

 tom gaf maria een 
(“Tom gave maria one”) 

which floor do you live on  op welke verdieping woont ge  welke welk  ben je  
(“which one are you“) 

 do a lot better than this next 
time   

om het volgende keer veel 
beter te doen  

ik veel     dit 
(“i like this a lot”) 

 



 

 had a chance to talk to tom 
yet  

al een kans om met tom te 
praten  

tom kans om   te  praten  
(“tom chance to talk”) 

he killed himself hij heeft zichzelf omgebracht  hij heeft zelfmoord gepleegd 
(“he committed suicide”) 

 i believed that he would keep 
his promise  

ik geloofde dat hij zijn belofte 
zou houden  

 ik wist dat hij zijn zou  zijn  
(“I knew he would be his”) 

i have never been to europe ik ben nog nooit in europa 
geweest  

ik heb nog nooit in canada  
(“i have never been to 
canada”) 

i am taking a bath now  ik ben aan het baden   ik ben nu een bad het  
(“i'm bathing it now”) 

 
This sounds promising but of course, this is far from a real professional automatic translation 
system which demonstrates how hard the challenge is.  
 
Of course, we can load any other training sets from the Tatoeba project such as 
English/Russian for example.  
 
We can also create a reverse translation by simply reversing the output and input data. 
 
Here is what we get with the Russian parallel corpus: 
 

Input Human translation Model translation 

they hired tom  они взяли тома на работу они наняли тома на 

 it's a very serious matter  это очень серьёзное дело это очень серьёзное вопрос  

the situation became 
dangerous 

ситуация стала опасной положение трудно 

 we could do this мы могли бы это сделать мы могли это 

tom hasn't written me back том мне не ответил том мне не написал в 

it's your choice tom это твой выбор том это тебе выбор том 

 beijing is bigger than rome пекин больше чем рим   книга больше чем    

that tom knows what mary 
needs to do 

 думаю что том знает что 
мэри нужно делать  

думаю что том знает что 
мэри нужно сделать  

 do we have to speak french   нам обязательно говорить 
по французски  

 нам надо говорить по 
французски 

 



 

did tom like your design  тому понравился твой 
дизайн 

 тому понравился ваш 
дизайн  

 he gave me a piece of 
friendly advice  

 он дал мне дружеский 
совет  

 он дал мне своим советов   

tom doesn't really want to go 
with us  

том не очень хочет идти с 
нами 

 том не очень хочет ехать с 
нами  

 what time are you going to 
do that  

во сколько вы будете это 
делать  

  во сколько ты будешь это 
делать 

 you've been very good to me  вы были очень добры ко 
мне  

  ты был для мне очень мне  

 
The Russian translator is surprisingly quite good. It comes from the fact that we trained the 
model with more than 400,000 inputs.  
 
Some flaws appear immediately, however. For example the sentence ' you've been very good to 
me'' is translated as: " ты был для мне очень мне": "you were for me very me" … 

With Self-Attention  
 
We run the model with self-attention. We see mitigated results. In some cases, the translation is 
close to perfect (yellow) but in some other cases, the translation does not improve or is even 
inferior in quality to the translation without self-attention (grey).  
 

Input Without self-attention With self-attention 

they hired tom они наняли тома на они наняли тома 

 it's a very serious matter это очень серьёзное вопрос  это очень серьёзное дело 

the situation became 
dangerous 

положение трудно ситуация была опасен 

 we could do this мы могли это  мы могли сделать это 

tom hasn't written me back том мне не написал в  том не  написал на ответ  

it's your choice tom это тебе выбор том  это вам выбор том 

 beijing is bigger than rome  книга больше чем    воздух больше чем 

that tom knows what mary 
needs to do 

думаю что том знает что 
мэри нужно сделать  

думаю что том знает что 
мэри нужно 

 



 

 do we have to speak french   нам надо говорить по 
французски 

нам надо говорить по 
французски  

did tom like your design   тому понравился ваш 
дизайн  

 тому понравился ваш 
дизайн  

 he gave me a piece of 
friendly advice  

 он дал мне своим советов   он подарил мне подарил 
пример  

tom doesn't really want to go 
with us  

 том не очень хочет ехать с 
нами  

том не очень хочет  с нами 

 what time are you going to 
do that  

  во сколько ты будешь это 
делать 

 во сколько вы будешь это 
делать 

 you've been very good to me   ты был для мне очень мне  ты был ко мне очень мне 

 
 

A Conclusion Regarding The Development Of 
Machine Learning Based Automatic Translation 
System 
 
Clearly what we have presented is not acceptable as a professional translation system. It is 
inferior to an average statistical professional translation system or to a rule-based translation 
system.  
 
We saw that by adding mechanisms of attention we could improve greatly the accuracy of our 
model anyway.  
 
To be efficient machine learning based translators requires tremendous amounts of data and 
very important processing power. This is why such systems are usually trained from the cloud 
with data coming from a lot of sources.  
 
Machine learning translators are anyway important because they paved the way to more 
sophisticated systems such as the “universal translator” able to translate any language into any 
other language, and even, potentially,  including unknown dialects. 

Deep Learning and the Universal Translator 
 
 

 



 

The universal translator - as described in [2] - is a concept device that potentially allows one to 
instantaneously translate any language into other, even without prior knowledge of it.  
 
The way such a device could extrapolate and interpret a totally 'exotic' language is still - as of 
2020 - a mystery and so there is no clue that such a device could be produced soon. Also, 
actually, there are no 'exotic' languages, and all languages on Earth are supposed to be 
recorded and known. 
 
Now with the development of Artificial Intelligence, and especially Deep Learning, we become 
closer to the development of such a device. Again, miniaturization, increase of power in 
processors, and research in AI allow the creation of 'primitive' types of Universal Translators. 
 

Presentation of our Deep Learning translation software 
 
Our functions will offer automatic translation from one language into another using the model we 
have developed. 
 
The code can be found there, as a Google Collab file. 
 
It will be able to create a model from a Parallel corpus that is tab-separated such as the ones 
from the Tatoeba project.  
 
We run our tool with a file containing some English texts we wish to translate. 
 
Content of test.txt: 
 
this is a test   
hello 
can you give me the bill please  
where is the main street   
 
 

translate("rus.txt","test.txt","model12") 

 
We get the following output:  
 
                             input             model translation 
0                this is a test                    это тест       
1                      hello                        привет        
2  can you give me the bill please   не можете мне  пожалуйста    
3       where is the main street             где здесь улице   
 

 

https://colab.research.google.com/drive/1_tNps0v8ht7R7cqxloMdgX4xGMWEoFsF?usp=sharing


 

The result is correct except for the third one. 
 
We use the French translator: 
 

train_model("fra.txt","model_fr") 
translate("fra.txt","test.txt","model_fr") 

 

 
 
                             input              model translation 
0                this is a test                 c'est un d'un      
1                      hello                                       
2  can you give me the bill please   tu me donner la  s'il te prie 
3       where is the main street           où est la rue est rue  
 
The result is overly bad. Only the fourth sentence is translated in some intelligible way. The 
reason is the complexity of the French language and the fact that the training data is not very 
important (compared to the Russian dataset)  
 
Here is the result for automatic translation from English to German: 
 
 
                              input                      model translation 
0                this is a test                      das ist eine test     
1                      hello                                               
2  can you give me the bill please   könntest sie mir die rechnung geben   
3       where is the main street                     wo ist die straße  
 
 
This is almost 100% perfect but the two languages are close enough.  
 
Finally, let's try our English-Dutch translator since we started with it:: 
 
                             input                model translation 
0                this is a test             dit is een nationale     
1                      hello                            hallo        
2  can you give me the bill please   kunt je me  instapkaart geven   
3       where is the main street             waar is de bushalt   
 

It’s not really perfect…  "Where is the main street" is translated as "Where is the Bus Station?" 
and "can you give me the bill please" is translated as "can you give me the boarding pass" so 
we have very different results depending on the language (and the size of the dataset).  
 
 

 



 

Directions 
 
In most cases, automatic translation software is paradoxically useless. Why? Because most 
people will never need more than the translation of a kernel of basic sentences. Do we really 
need machines to perform a professional translation in French of the play "Richard III" by 
William Shakespeare? These machines will, anyway, never equal the Human genius in such an 
area.  
 
The real goal is the ability to build systems that can understand unknown and very exotic 
languages.  
 
In fact there exist in the world more than 6,500 spoken languages. However many of these 
languages (2,000) are in fact very rare dialects spoken by a small population - usually a tiny 
ethnic group. For example, the Kaixana or the Taushiro languages are only spoken by … one 
person in the entire world!. 
 
This should underline the incredible challenges to overcome to build a Universal translator that 
could convert one of these exotic languages into any other language - let us say into English. 
 
Army personnel, explorers, and scientists in foreign territories should make use of such 
universal translators since communication in the first moment of an encounter is often vital in 
such situations. This is where Deep learning can be really useful.  
 
There are plenty of ways of building machine learning systems for machine translation. We just 
explored one of these ways. It is possible, for example, to use Convolutional neural Networks in 
addition or use software like moses in combination with the Deep learning model.  
 
Anyway, the main factor for quality will be, as usual, the size of the training set. 
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