

Using Deep Learning for Automatic
Translation

Martin Rupp

SCIENTIFIC AND COMPUTER DEVELOPMENT (SCD)

In this article, we will learn how to use Deep Learning to create an automatic translation system.
For this, we will provide a step-by-step tutorial to help you understand and build a Neuronal
Machine Translation.

An Overview of Machine Learning and Machine Translation

Quick facts about the history of Machine Translation
Why Deep Learning is good at doing MT
The functioning of an LSTM network applied to MT

Some info about SMT
The main principles of NMT

RNNs and LSTM
Encoders and Decoders
Gated Recurrent Unit (GRU)
The ‘attention’ mechanism
Embeddings
Word2Vec, Glove, ELMO, and BERT

Tools and Software Needed for Building an Automatic Translation System with Deep Learning
Versions
TensorFlow
Keras
Pandas
Word2Vec

How to Code an Automatic Translation System by Using TensorFlow and Keras
Training and Testing an Automatic Translation System Using Deep Learning

Training and testing using the LSTM cells
With Self-Attention

A Conclusion Regarding The Development Of Machine Learning Based Automatic Translation
System

Deep Learning and the Universal Translator

Presentation of our Deep Learning translation software
Directions
References

An Overview of Machine Learning and Machine
Translation

Before we explain concretely how to use Deep Learning (DL), we aim to provide a quick
background to the reader in the area of Machine translation. We assume that the reader has a
basic knowledge of machine learning, training, supervised learning, and neural networks and
understands the concepts of artificial neurons, layers, and back-propagation.

Quick facts about the history of Machine Translation

The concept of Machine Translation (MT), or the ability to translate automatically - via a
machine - natural languages into each other dates at least from 1949 when Warren Weaver
stated the main principles of MT. At first, MT was done using expert rules (RBMT), requiring a lot
of work from human translators. Then, in the late 70's, Statistical Machine Translation (SMT)
appeared and started to develop itself, especially under the influence of the Candide project
funded by IBM.

SMT was based on computing the most probable relationship between pairs of words and
sentences taken from a text corpora (in the original language and the targeted language).

SMT ruled the area of MT until 2000 when the application of Neural Networks to MT, Neural
Machine Translation (NMT), was proposed as an alternative to SMT.

While NMT did not succeed well at the beginning, it made impressive progress through the
years and this is only with the recent development of AI processing power (GPU cards, etc…)
that NMT is getting superior results to SMT.

With the ongoing research on Deep Learning and Long Short-term Memory designs (LSTM),
NMT is getting more and more 'insane' results and it's only a matter of time before NMT will
replace SMT in all the actual commercial automatic translation software.

Why Deep Learning is good at doing MT

Deep Learning aims at the creation of an artificial brain so everything that a human brain can do
can be theoretically performed by a Deep Learning system. Besides, LSTM, a Deep Learning
technique - a Recurrent Neural Network (RNN) to be more precise - has unprecedented records
of recalling and detecting temporal patterns. This is of interest when considering a sentence
from a natural language as a conditional time series of words or in fact, equivalently, considering
a sentence as the result of a Markov process.

The functioning of an LSTM network applied to MT

Some info about SMT

Let's now focus on how our LSTM will work in the context of MT. As a start, we must briefly
describe the main principles of SMT and how MT works.

As a general rule, one must use a base named a parallel corpus linguae. This is, in essence, a
'super-dictionary', usually created from sources gathered from professional translators or senior
students , where pairs of words or sentences are associated together.

SMT and NMT are both using parallel corpus linguae. SMT will partition the input sentence into
groups of words and then use probabilities to find the most probable ‘matching’ combination.

An SMT such as moses for example, will create a translation model from the training data and
apply that translation model to any input, providing the sentence in the target language which
has the highest score in terms of conditional probability.

Parallel corpus linguae can be found on the internet for a lot of natural languages. For example,
many English/Dutch parallel corpus linguae can be downloaded from the Tatoeba Project.
Other sources exist, such as the Linguee website.

http://www.statmt.org/moses
https://www.linguee.com/english-dutch/search?source=auto&query=we+need+to+write+a+business+plan

Illustration: Parallel corpus linguae from the Linguee.com website.

The Tatoeba Project provides tab-delimited bilingual sequence pairs for various languages. For
instance, the English/Dutch parallel corpus contains around 50,000 lines of translated pairs.

Illustration: Parallel corpus linguae (English/Dutch) from the Tatoeba project website.

Usually, SMT will create a language model for the (non-parallel) corpus of the input language.

The translation model and the language model are then used, together with possibly a lexicon
model and an alignment model to compute a series of probabilities, generally using Bayesian
rules and a maximal likelihood (MLE) estimator. The MLE represents a score and the MT will
pick up the sentence in the targeted language that 'matches' the more the input sentence, e.g.
with the higher MLE.

The principle of SMT is, roughly, that "if such an English sentence with such words (potentially
closer or identical to some of the input words) was associated to such a Dutch sentence with

such words and if such another English sentence with such words (potentially closer or identical
to some of the input words) was associated to such a Dutch sentence with such words and …”
then there is a (conditional) probability p that this input sentence is translated by this output
sentence. By computing all these conditional probabilities, we can use estimators such as the
MLE to score candidates for the translated sentence.

The main principles of NMT

Here are the main tools and concepts that we need to clarify, so as to be able to build our
automatic translation machine which will translate, as you may have guessed, from English to
Dutch.

- RNNs and LSTM
- Encoders and Decoders
- Gated Recurrent Unit (GRU)
- The attention mechanism
- Embeddings
- Word2Vec, ELMO and BERT

RNNs and LSTM

First, let's look at the structure of a RNN. We represented a basic RNN below. As you can see it
combines layers: which form a directed sequence. 𝑙𝑎𝑦𝑒𝑟

0
, 𝑙𝑎𝑦𝑒𝑟

1
,... 𝑙𝑎𝑦𝑒𝑟

𝑘
, 𝑙𝑎𝑦𝑒𝑟

𝑘+1
,...

The input vector is transformed into an output vector 𝑋 = (𝑋

0
,..., 𝑋

𝑛
) 𝑌 = (𝑌

0
,..., 𝑌

𝑛
)

Illustration 1: a simple RNN

At this stage it’s not exactly clear what is happening in a RNN. It is important to understand that
each layers produces an activation (just like any neural network layer) but it also directly 𝑎

𝑡

produces an output which is a function of . 𝑌
𝑡

𝑎
𝑡

The equation of the (ordinary layer of a) simple RNN that we have presented is the following:

 𝑎
𝑡

= 𝐹(α. 𝑎
𝑡−1

+ β. 𝑥
𝑡

+ γ)

And:

. 𝑌
𝑡

= 𝐺(δ. 𝑎
𝑡

+ ϵ)

Here F and G are two activation functions, are variables that depend on the layer α, β, δ, ϵ
coefficients.

The RNN that we have represented is called many-to-many and that’s because there are
‘many’ inputs and ‘many’ outputs. That’s typically what we need to do in a machine translation.
A unique-to-many outputs is named a one-to-many RNN and a many inputs to a unique output
is named a many-to-one RNN.

RNN are not only useful in the domain of MT. They are also successfully applied to Speech
recognition, music generation, feelings recognition and much more.

In the case of MT, we need to proceed with a slightly different type of RNN which we represent
there:

Illustration 2: a many-to-many RNN suited for NMT

This is the type of RNN that we shall be using in what will follow. The k components of the input
vector will be the words of the sentence in the English language and the l components of the
output vector are the words of the translated sentence in the Dutch language.

LSTM is a refinement of RNNs and so far, they are among the more performant RNN designs.
In such a design, several or all layers are replaced by LSTM cells. These cells have a different
design than the ‘ordinary’ RNN layers.

Here we present the comparison between the ordinary layer and the LSTM cell.
It's not exactly straightforward to tell why the LSTM cell is much better than the 'ordinary' RNN
layer...except that it is slightly more complex.

An LSTM cell has two gates: an input gate and a forget gate . Here the
‘Sigma’ symbol represents a linear combination1 with the inputs (+ a constant).
It also transfers deep learning hidden states2 (h.c).

2 Warning: this is the ‘deep learning version’ of the term ‘hidden state’
1 Note that all operations are vector operations

Illustration 3: comparison between a standard RNN layer and an LSTM cell

The model will mimic the Human concept of forgetting. For example, forgetting non-essential
information. It is fully recurrent since it will re-input the previous states as well.

It would be too long to explain why the LSTM is good at doing the work and we wanted here to
give just some hints to a curious reader and also to demonstrate how neural networks are in fact
'abstract' logical circuits which are more designed by A.I engineers rather than coded. This is
also how analog computers (nondigital) are programmed.

Encoders and Decoders

We already illustrated the concept of encoder-decoder as the RNN suited for machine
translation (illustration 2). In fact, two RNNs. One is the encoder, it encodes a sequence of
words into a fixed-length vector and the other is a decoder, it does the reverse operation.
The RNN in illustration 2 is also called a sequence-to-sequence RNN.

Gated Recurrent Unit (GRU)
This is just an LSTM cell with fewer features. It can perform better than LSTM in special areas.
It can be used to simplify some designs and will generally perform faster than LSTM. We won’t
use GRU here but we mention their existence to the curious reader.

The ‘attention’ mechanism
The ‘attention’ mechanism is a key concept in NMT and was introduced relatively recently.
However it’s very simple, it only consists in giving more ‘weight’ (importance) to one or more
words contained in the sentence to translate. This simple mechanism allows now to solve many
problems encountered before by NMT.

Embeddings
Embeddings are a kind of multi-dimensional representation of a word to provide statistical
information about it and link it with others 'base words' which have a closer meaning or may
have a close relationship with it. For example, the word lynx may be embedded as (cat,
animal,wild) with some coordinates associated with it.
Word embedding usually allows the Skip-gram technique: predicting “surrounding” words to an
existing word.

Word2Vec, Glove, ELMO, and BERT

BERT is a Bidirectional Encoder Representation from Transformers. This is a language model
or language representation of English. This means that BERT provides a parameterized view of
the English language, containing synonyms, and similarities between words and sentences, for
example. BERT also provides word embeddings, the same as Word2vec, GloVe, ELMo

 , and others There are a lot of similar tools and transformers in the area of natural language
processing (NLP). Actually, BERT is a pre-trained system that usually competes directly with the
LSTM cells.

Now that we have defined the theoretical background of our project, we will detail in the next
part, which tools we must use to build our English-Dutch NMT system.
In this project, we should have used BERT but because of time limitations, we will use
Word2vec instead.

Tools and Software Needed for Building an
Automatic Translation System with Deep Learning

Our project will consist of building an English-to-Dutch translator using Deep Learning. In the
first part, we briefly introduce the main theoretical concepts that are involved. Now we introduce
the tools that we shall need:

● TensorFlow
● Keras
● Pandas

There are multiple frameworks that provide API for deep learning. The combination TensorFlow
+ Keras is - by far - the most popular, but other equivalent frameworks such as PyTorch, Caffe
or Theano are also widely used.

These frameworks often provide a 'black box' approach to Neural Networks and they do most of
the 'magic' without requiring the user to code the neural network's logic. There are also other
ways to build neural networks, for instance, with deep learning compilers. Here, however, we do
not wish to use such tools.

We will write the code and run the NMT on a Linux centOS 7.8. Centos is reputed to be a very
stable Linux distribution, however in reality, almost all the development we will do in the project
will be using Python, so the choice of the O.S is not really important.

Versions

We list here the versions of the Python modules that we are using. All these versions can be
explicitly installed by using the '==[version]’ flag at the end of the pip3 command. For instance:
“pip install tensorflow==2.0”.
We leave the user the choice of the versions, anyway, depending on their operating system.
We are not using in this project the latest version of these modules.

module version

TensorFlow 1.5.0

Keras 2.1.0

numpy 1.18.1

pandas 1.1.3

word2vec

TensorFlow
TensorFlow is a very popular Python framework for the building of neural networks.
To Install TensorFlow, we proceed as follows:

First, we need to install Python.
For this we update the package manager:

yum update -y

Then we install Python3:

yum install -y python3

This will actually install Python 3.6 which is not the latest Python version at the moment where
we write this tutorial, but that will do it.

Note that the next steps aren't really O.S. dependent and only require Python3.6 to be
installed.

Pip3 - the python3 package manager - should be installed by default.

Once this is done, Tensorflow can be installed by running:

pip3 install tensorflow

The download and installation of the TensorFlow package may take some time since the
package is more than 400 MB.

You can control that TensorFlow installed successfully by typing:

pip3 show tensorflow

The output should be similar to this:

Name: tensorflow

Version: 2.3.1

Summary: TensorFlow is an open-source machine learning framework for everyone.

Home-page: https://www.tensorflow.org/

Author: Google Inc.

Author-email: packages@tensorflow.org

License: Apache 2.0

Location: /usr/local/lib64/python3.6/site-packages

Requires: opt-einsum, tensorboard, termcolor, six, h5py, gast, tensorflow-estimator,

google-pasta, astunparse, wrapt, grpcio, absl-py, numpy, keras-preprocessing,

protobuf, wheel

Required-by:

Warning: it’s important to run python3 and not simply ‘python’ (same for pip3 and not ‘pip’)
because there usually exists a ‘system’ python in centos which must not be used for the project.

Keras

Now that we have installed TensorFlow, we need to install Keras. Keras is a deep-learning API
that will run on top of TensorFlow. Keras can run as well on top of Theano for example, but here
we choose to associate it with TensorFlow.

To install Keras, the process is identical, we type the following command:

pip install keras

To check if keras is well installed, just type:

pip list | grep Keras

Pandas

Pandas is a Python API for data manipulation and data analysis. We will need it, among other
things, to prepare the training data for the Deep Learning Model.

This library can be simply installed by using pip3:

pip3 install pandas

Word2Vec

We need Word2Vec for the word embedding, that is to say, to create the embedding layer in our
neural network. As we mentioned previously, there are also other tools that can do the job like
GloVe or BERT. BERT, which is not context-free, unlike Word2Vec, would provide more
efficiency here because it offers a richer set of information, but unfortunately, it is more complex
to integrate.

In this project, we will not use a GPU card. If we wanted GPU support, we should have
proceeded slightly differently.

The tool we have installed will allow us to build out the MT software. Here is how the pieces of
our puzzle will get assembled:

1) We will process an English dictionary and have BERT create a custom word embedding
system for the English language.

2) We will build a sequence-to-sequence RNN with LSTM cells using Keras. Keras has

indeed built-in support for everything that we need.

3) We will add an embedding layer to the RNN from the embedding created by BERT, at
the start of the LSTM sequence-to-sequence RNN.

4) We will process the parallel corpus linguae English/Dutch by cleaning it, formatting it,
and tokenizing it.

5) We will train our Deep Learning model with the processed parallel corpus linguae
English/Dutch.

6) We will test our NMT with several English sentences to check its accuracy.

There could be some variations. For instance, instead of using LSTM cells, we could use GRU
cells.

Illustration 4: Workflow of the Neural Machine Translation system we will build

We must also decide how many words we will use for training the system, because training our
model may require very important processing power that we do not have in the context of the
project.

We will develop functions that will allow us to train and translate from English into another
language.

def train_model(path_to_data,path_to_model,use_attention=1)

def translate(path_to_data, path_to_file, path_to_model)

● Path_to_data: path to the training data

● Path_to_model path to the model

● Use_attention: flag to use the self-attention mechanism

● Path_to_file: path to a file containing the English texts to

translate

How to Code an Automatic Translation System by
Using TensorFlow and Keras

Now that we have defined all the concepts and tools that we need and that we have installed,
we will build the DMT system.
In what follows there is, in fact, very little code that we will write, because most of the logic
consists in using pre-formatted 'templates' which use the Keras framework.

A part of our Kears code is essentially inspired by [1].

As a start, we need to load our libraries:

import warnings

warnings.filterwarnings("ignore")

import tensorflow as tf
import numpy as np
import string
from numpy import array, argmax, random, take
#for processing imported data
import pandas as pd
#the RNN routines
from keras.models import Sequential
from keras.layers import Dense, LSTM, Embedding, RepeatVector
#we will need the tokenizer for BERT
from keras.preprocessing.text import Tokenizer
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.sequence import pad_sequences
from keras.models import load_model
from keras import optimizers
#that's optional if you want to generate statistical graphs of the DMT
#import matplotlib.pyplot as plt

We shall dig into the data processing later when working on the training.

Building our model with Keras is extremely straightforward. We need to use the LSTM class.

https://keras.io/api/layers/recurrent_layers/lstm/

Most of the parameters of a LSTM cell are provided by default so the only thing we need to
provide is the dimensionality of the output, that is to say, the number of LSTM cells that will be
created for our sequence-to-sequence RNN.
From what we have defined, an input (resp output) vector will be the total of the words inside the
original sentence (resp translated sentence). But since we use an embedding, we will get
tokenized words, which means that words can be split into sub-tokens, which will increase the
number of words in the input sentence. We will have to pad anyway the input/output vectors.

The length of 512 is enough here.

lstm = tf.keras.layers.LSTM(512)

And … that's mostly all of the programming, thanks to the developer(s) of Keras. Most of the
readers shouldn't have to dig inside that black box. However, coding an LSTM cell from scratch
isn't a really hard challenge at all as its design is simple.

We need to use the Sequential model provided by Keras as well.

model = Sequential()

Finally, we add a Dense layer to our model. A dense layer takes all the output neurons from the
previous layer. We need the dense layer because we’re making predictions here. Indeed what
we want is the sentence in the Dutch language which has the maximal score to be the
translated English sentence that has been inputted. A dense layer generally computes a
softmax on the outputs of each LSTM cell.

model.add(Dense(LEN_RU, activation='softmax'))

Where LEN_RU is the size of the output vector (we will compute these parameters later on).
The same for the variable LEN_EN .
Finally here is the main code for our model:

model = Sequential()

model.add(LSTM(512))

model.add(RepeatVector(LEN_EN))

model.add(LSTM(512))
model.add(Dense(LEN_RU, activation='softmax'))
rms = optimizers.RMSprop(lr=0.001)
model.compile(optimizer=rms, loss='sparse_categorical_crossentropy')

https://www.tensorflow.org/guide/keras/sequential_model
https://keras.io/api/layers/core_layers/dense/

We are using a Keras optimizer named RMSprop. It will optimize the gradient descent technique
itself used for backpropagation.

We need to add the embedding layer and we also want to include an attention layer as well
between the encoder and the decoder.

We need to add the embedding layer which is performed with Word2Vec. This is in fact a
pre-trained embedding layer. So what we need to do is to generate the Word2Vec weights
matrix (the weights of the neurons of the layer) and fill a standard keras Embedding layer with it.
We can use the gensim package to get the embedding layer automatically:

from gensim.models import Word2Vec

Then:

model_w2v = Word2Vec(common_texts, size=100, window=5, min_count=1, workers=4)

The embedding layer can then be retrieved by the following code:

model_w2v.wv.get_keras_embedding(train_embeddings=False)

We can call the model.summary() function to get an overview of our model:

Layer (type) Output Shape Param #

===

embedding_1 (Embedding) (None, None, 100) 1200

lstm_1 (LSTM) (None, 512) 1255424

repeat_vector_1 (RepeatVecto (None, 8, 512) 0

lstm_2 (LSTM) (None, 512) 2099200

dense_1 (Dense) (None, 512) 262656

===

Total params: 3,618,480

Trainable params: 3,617,280

Non-trainable params: 1,200

As we mentioned it previously, we wish to add an attention mechanism.
We could write it from scratch but a simpler solution is to use an existing attention Keras module
such as the Keras self-attention module.

We need to import the module:

from keras_self_attention import SeqSelfAttention

And we will add it between the two LSTM blocks by inserting the following line of code:

model.add(SeqSelfAttention(attention_activation='sigmoid'))

Our model is now complete.

Here is the final code of our neural network coded in Keras:

import warnings
warnings.filterwarnings("ignore")
import numpy as np
import string
from numpy import array, argmax, random, take
#for processing imported data
import tensorflow as tf
import pandas as pd
#the RNN routines
from keras.models import Sequential
from keras.layers import Dense, LSTM, Embedding, RepeatVector
from keras.preprocessing.text import Tokenizer
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.sequence import pad_sequences
from keras.models import load_model
from keras import optimizers
#that's optional if you want to generate statistical graphs of the DMT
#import matplotlib.pyplot as plt
#from keras.utils import plot_model
#import pydot

from gensim.models import Word2Vec

https://pypi.org/project/keras-self-attention/

from gensim.test.utils import common_texts
from keras_self_attention import SeqSelfAttention

model = Sequential()

model_w2v = Word2Vec(common_texts, size=100, window=5, min_count=1,

workers=4)
model.add(model_w2v.wv.get_keras_embedding(train_embeddings=False))
model.add(LSTM(512))
model.add(RepeatVector(8))

model.add(SeqSelfAttention(attention_activation='sigmoid'))

model.add(LSTM(512))
model.add(Dense(LEN_RU, activation='softmax'))
rms = optimizers.RMSprop(lr=0.001)
model.compile(optimizer=rms, loss='sparse_categorical_crossentropy')

#plot_model(model, to_file='model_plot4a.png', show_shapes=True,

show_layer_names=True)

model.summary()

When we run the code, we get the following output:

[root@ids ~]# python3 NMT.py

Using TensorFlow backend.

Layer (type) Output Shape Param #

===

embedding_1 (Embedding) (None, None, 100) 1200

lstm_1 (LSTM) (None, 512) 1255424

repeat_vector_1 (RepeatVecto (None, 8, 512) 0

seq_self_attention_1 (SeqSel (None, 8, 512) 32833

lstm_2 (LSTM) (None, 512) 2099200

dense_1 (Dense) (None, 512) 262656

===

Total params: 3,651,313

Trainable params: 3,650,113

Non-trainable params: 1,200

Now that the model is ready, we will move to the final phase of the development: preparing the
data for training the model.

Training and Testing an Automatic Translation
System using Deep Learning

Training and testing using the LSTM cells

We first start to train and test a model built only with the core system: TSTM cells and without
self-attention and word embedding. The standard Keras embedding component will provide the
encoding from a set of words into vectors.

The last phase of our development consists in training the model.
For this, there are several specific tasks that must be performed:

● Cleaning the training data (preprocessing)
● Tokenization of the input data (preprocessing)
● Deciding on the ratio training data / self-test data
● Training of the model

Once the input data are cleaned, our next step is to prepare the input data (source) and output
data (target) so that we can have numerical, fixed-size, input, and output models. Indeed we
cannot (yet) feed sentences or words to a Keras neural network model.

The Keras tokenizer will create an internal vocabulary made with the words contained in the
parallel corpus.

We must first use the function fit_on_texts .

This function accepts as an argument a list of sentences and builds a mapping from the most
commonly encountered words to indexes. It doesn't encode any sentence but prepares a
tokenizer to do so.

Then we have to provide a way to encode our input sentences. Once we have initialized the
tokenizer, we will use the function texts_to_sequences for the encoding. The following code
retrieves a word from a numerical vector.

 temp = []
 for j in range(len(i)):
 t = get_word(i[j], ru_tokenizer)
 if j > 0:
 if (t == get_word(i[j-1], ru_tokenizer)) or (t == None):
 temp.append('')
 else:
 temp.append(t)
 else:
 if(t == None):
 temp.append('')
 else:
 temp.append(t)
 return ' '.join(temp)

We will use a Google Collab notebook to run the training and the testing since we can use free
GPU power there.

First, we run on the first entries of our data set.
We will get an exact result for the entries that fall in the training data and we will get an
approximated transaction for the other data. We can check that the translator doesn’t behave so
badly.

Here we represent the input data in English, then the ideal translation, and finally the model
translation.

If we try with more complex sentences , outside of course the training data of the model, we get
this:

Input Human translation Model translation

 tom offered mary a
handkerchief

 tom bood maria een zakdoek
aan

 tom gaf maria een
(“Tom gave maria one”)

which floor do you live on op welke verdieping woont ge welke welk ben je
(“which one are you“)

 do a lot better than this next
time

om het volgende keer veel
beter te doen

ik veel dit
(“i like this a lot”)

 had a chance to talk to tom
yet

al een kans om met tom te
praten

tom kans om te praten
(“tom chance to talk”)

he killed himself hij heeft zichzelf omgebracht hij heeft zelfmoord gepleegd
(“he committed suicide”)

 i believed that he would keep
his promise

ik geloofde dat hij zijn belofte
zou houden

 ik wist dat hij zijn zou zijn
(“I knew he would be his”)

i have never been to europe ik ben nog nooit in europa
geweest

ik heb nog nooit in canada
(“i have never been to
canada”)

i am taking a bath now ik ben aan het baden ik ben nu een bad het
(“i'm bathing it now”)

This sounds promising but of course, this is far from a real professional automatic translation
system which demonstrates how hard the challenge is.

Of course, we can load any other training sets from the Tatoeba project such as
English/Russian for example.

We can also create a reverse translation by simply reversing the output and input data.

Here is what we get with the Russian parallel corpus:

Input Human translation Model translation

they hired tom они взяли тома на работу они наняли тома на

 it's a very serious matter это очень серьёзное дело это очень серьёзное вопрос

the situation became
dangerous

ситуация стала опасной положение трудно

 we could do this мы могли бы это сделать мы могли это

tom hasn't written me back том мне не ответил том мне не написал в

it's your choice tom это твой выбор том это тебе выбор том

 beijing is bigger than rome пекин больше чем рим книга больше чем

that tom knows what mary
needs to do

 думаю что том знает что
мэри нужно делать

думаю что том знает что
мэри нужно сделать

 do we have to speak french нам обязательно говорить
по французски

 нам надо говорить по
французски

did tom like your design тому понравился твой
дизайн

 тому понравился ваш
дизайн

 he gave me a piece of
friendly advice

 он дал мне дружеский
совет

 он дал мне своим советов

tom doesn't really want to go
with us

том не очень хочет идти с
нами

 том не очень хочет ехать с
нами

 what time are you going to
do that

во сколько вы будете это
делать

 во сколько ты будешь это
делать

 you've been very good to me вы были очень добры ко
мне

 ты был для мне очень мне

The Russian translator is surprisingly quite good. It comes from the fact that we trained the
model with more than 400,000 inputs.

Some flaws appear immediately, however. For example the sentence ' you've been very good to
me'' is translated as: " ты был для мне очень мне": "you were for me very me" …

With Self-Attention

We run the model with self-attention. We see mitigated results. In some cases, the translation is
close to perfect (yellow) but in some other cases, the translation does not improve or is even
inferior in quality to the translation without self-attention (grey).

Input Without self-attention With self-attention

they hired tom они наняли тома на они наняли тома

 it's a very serious matter это очень серьёзное вопрос это очень серьёзное дело

the situation became
dangerous

положение трудно ситуация была опасен

 we could do this мы могли это мы могли сделать это

tom hasn't written me back том мне не написал в том не написал на ответ

it's your choice tom это тебе выбор том это вам выбор том

 beijing is bigger than rome книга больше чем воздух больше чем

that tom knows what mary
needs to do

думаю что том знает что
мэри нужно сделать

думаю что том знает что
мэри нужно

 do we have to speak french нам надо говорить по
французски

нам надо говорить по
французски

did tom like your design тому понравился ваш
дизайн

 тому понравился ваш
дизайн

 he gave me a piece of
friendly advice

 он дал мне своим советов он подарил мне подарил
пример

tom doesn't really want to go
with us

 том не очень хочет ехать с
нами

том не очень хочет с нами

 what time are you going to
do that

 во сколько ты будешь это
делать

 во сколько вы будешь это
делать

 you've been very good to me ты был для мне очень мне ты был ко мне очень мне

A Conclusion Regarding The Development Of
Machine Learning Based Automatic Translation
System

Clearly what we have presented is not acceptable as a professional translation system. It is
inferior to an average statistical professional translation system or to a rule-based translation
system.

We saw that by adding mechanisms of attention we could improve greatly the accuracy of our
model anyway.

To be efficient machine learning based translators requires tremendous amounts of data and
very important processing power. This is why such systems are usually trained from the cloud
with data coming from a lot of sources.

Machine learning translators are anyway important because they paved the way to more
sophisticated systems such as the “universal translator” able to translate any language into any
other language, and even, potentially, including unknown dialects.

Deep Learning and the Universal Translator

The universal translator - as described in [2] - is a concept device that potentially allows one to
instantaneously translate any language into other, even without prior knowledge of it.

The way such a device could extrapolate and interpret a totally 'exotic' language is still - as of
2020 - a mystery and so there is no clue that such a device could be produced soon. Also,
actually, there are no 'exotic' languages, and all languages on Earth are supposed to be
recorded and known.

Now with the development of Artificial Intelligence, and especially Deep Learning, we become
closer to the development of such a device. Again, miniaturization, increase of power in
processors, and research in AI allow the creation of 'primitive' types of Universal Translators.

Presentation of our Deep Learning translation software

Our functions will offer automatic translation from one language into another using the model we
have developed.

The code can be found there, as a Google Collab file.

It will be able to create a model from a Parallel corpus that is tab-separated such as the ones
from the Tatoeba project.

We run our tool with a file containing some English texts we wish to translate.

Content of test.txt:

this is a test
hello
can you give me the bill please
where is the main street

translate("rus.txt","test.txt","model12")

We get the following output:

 input model translation
0 this is a test это тест
1 hello привет
2 can you give me the bill please не можете мне пожалуйста
3 where is the main street где здесь улице

https://colab.research.google.com/drive/1_tNps0v8ht7R7cqxloMdgX4xGMWEoFsF?usp=sharing

The result is correct except for the third one.

We use the French translator:

train_model("fra.txt","model_fr")
translate("fra.txt","test.txt","model_fr")

 input model translation
0 this is a test c'est un d'un
1 hello
2 can you give me the bill please tu me donner la s'il te prie
3 where is the main street où est la rue est rue

The result is overly bad. Only the fourth sentence is translated in some intelligible way. The
reason is the complexity of the French language and the fact that the training data is not very
important (compared to the Russian dataset)

Here is the result for automatic translation from English to German:

 input model translation
0 this is a test das ist eine test
1 hello
2 can you give me the bill please könntest sie mir die rechnung geben
3 where is the main street wo ist die straße

This is almost 100% perfect but the two languages are close enough.

Finally, let's try our English-Dutch translator since we started with it::

 input model translation
0 this is a test dit is een nationale
1 hello hallo
2 can you give me the bill please kunt je me instapkaart geven
3 where is the main street waar is de bushalt

It’s not really perfect… "Where is the main street" is translated as "Where is the Bus Station?"
and "can you give me the bill please" is translated as "can you give me the boarding pass" so
we have very different results depending on the language (and the size of the dataset).

Directions

In most cases, automatic translation software is paradoxically useless. Why? Because most
people will never need more than the translation of a kernel of basic sentences. Do we really
need machines to perform a professional translation in French of the play "Richard III" by
William Shakespeare? These machines will, anyway, never equal the Human genius in such an
area.

The real goal is the ability to build systems that can understand unknown and very exotic
languages.

In fact there exist in the world more than 6,500 spoken languages. However many of these
languages (2,000) are in fact very rare dialects spoken by a small population - usually a tiny
ethnic group. For example, the Kaixana or the Taushiro languages are only spoken by … one
person in the entire world!.

This should underline the incredible challenges to overcome to build a Universal translator that
could convert one of these exotic languages into any other language - let us say into English.

Army personnel, explorers, and scientists in foreign territories should make use of such
universal translators since communication in the first moment of an encounter is often vital in
such situations. This is where Deep learning can be really useful.

There are plenty of ways of building machine learning systems for machine translation. We just
explored one of these ways. It is possible, for example, to use Convolutional neural Networks in
addition or use software like moses in combination with the Deep learning model.

Anyway, the main factor for quality will be, as usual, the size of the training set.

References

[1] A Must-Read NLP Tutorial on Neural Machine Translation – The Technique Powering Google
Translate. PRATEEK JOSHI

[2] Do Universal Translators Already Exist? MARTIN RUPP.

https://www.youtube.com/watch?v=4qFG-sggtVc
https://docs.google.com/document/d/e/2PACX-1vQ9awFXHF-86fhrqd-8bTdRSWMLQdhkEz9KgcA1hjbMciY6B7dxtqYIC1kAb18kfk3L1TAUDPAQQTzV/pub

	Using Deep Learning for Automatic Translation
	An Overview of Machine Learning and Machine Translation
	Quick facts about the history of Machine Translation
	Why Deep Learning is good at doing MT
	The functioning of an LSTM network applied to MT
	Some info about SMT
	The main principles of NMT
	RNNs and LSTM
	Encoders and Decoders
	Gated Recurrent Unit (GRU)
	The ‘attention’ mechanism
	Embeddings
	Word2Vec, Glove, ELMO, and BERT

	Tools and Software Needed for Building an Automatic Translation System with Deep Learning
	Versions
	TensorFlow
	Keras
	Pandas
	Word2Vec

	How to Code an Automatic Translation System by Using TensorFlow and Keras
	Training and Testing an Automatic Translation System using Deep Learning
	Training and testing using the LSTM cells
	With Self-Attention

	A Conclusion Regarding The Development Of Machine Learning Based Automatic Translation System
	Deep Learning and the Universal Translator
	Presentation of our Deep Learning translation software

	Directions
	References

